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CLAMPED CIRCULAR RIGID-PLASTIC PLATES
UNDER CENTRAL BLAST LOADING

A. L. FLORENCE
Stanford Research Institute, Menlo Park, California

Abstract-A theoretical study is made of clamped circular plates of rigid-plastic material subjected to blast
loading uniformly distributed over a central circular area. The dependence of the permanent central deflection
on pressure, impulse and loaded area is obtained when the blast pulse is taken as a rectangular pulse.

1. INTRODUCTION

THE PROBLEM treated is the response of a clamped circular plate subjected to a suddenly
applied pressure uniformly distributed over a central circular area. The pressure is assumed
high enough or held on the plate long enough to produce moderately large plastic defor­
mations. Although the governing equations are derived for a general pressure-time
relationship they are solved only for the simplest case; that of a pressure held constant
for a time and then suddenly released (a rectangular pulse). It is the variation of the
permanent central deflection with pressure, impulse (area under the pressure-time curve)
and the loaded area that constitutes the principal result. Because of interest in moderately
large plastic deformations and in order to simplify the analysis the plate material is
assumed to be rigid-perfectly plastic obeying the Tresca yield condition and the associated
flow rule. Only the bending action of the plate is taken into account.

Past work on the dynamic response of a rigid-plastic circular plate concerns blast
or impulsive loading uniformly distributed over the entire area. Wang and Hopkins [1]
found the response of a clamped plate to an ideal impulse. A similar method of solution,
the established continuity and jump conditions, and similar nomenclature are employed
here. The responses of a simply-supported plate to an ideal impulse and a rectangular
pulse were found by Wang [2] and by Hopkins and Prager [3] respectively. Recently
the response of a clamped plate to a rectangular pulse was obtained [4].

The present problem is quite similar to that of (4] but, due to the loading covering
only. a central part of the plate (Fig. 1), two additional mechanisms of deformation can
exist. An analogous situation exists for clamped beams [5].
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FIG. 1. Circular plate problem.
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2. MECHANISMS OF DEFORMATION

A blast pulse may be idealized to the form shown in Fig. 2 with an instantaneous
rise to the peak pressure Pm followed by a continuous monotonic decay. It is assumed that
this form of pulse allows a steady progress through the various mechanisms ofdeformation
that will be described.

o
FIG. 2 Idealized blast plate.

During deformation the plate is divided into annular regions in each of which exists
a certain plastic regime defined by a vertex or side of the Tresca yield hexagon (Fig. 3)
relating M and N, the radial and circumferential components of bending moment
(positive moments cause tension on the underside of the plate). In this problem only the
portion ABC is involved. Associated with these annular regions are velocity fields which
must satisfy the flow rule, boundary conditions, and the appropriate continuity and dis­
continuity conditions [1].

N

FIG. 3. Tresca yield hexagon.

From the equation of equilibrium, the static collapse pressure P., acting on a central
circular area of radius r = a of a plate of radius r = R, is found by assuming that in the
circle 0 :s; r :s; rs, the plastic regime is AB, A being at the plate center and B at radius
r = rs , while in the outer annular region rs :s; r :s; R the plastic regime is BC, C being
at the plate support r = R. The result may be expressed in the form [6]

psR
2a2(1-2rx/3ps)j2Mo = I 0 < rx :s; Ps (1)

where Ps is the solution of

(2)
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and

(3)Ps S a S 1PsR
2p;/6Mo = 1

where now Ps is the solution of

p;~+2In;.)=3a2(1+2In~) (4)

In equations (1), (2), (3) and (4), Ps = rslR, a = aiR and Mo is the fully plastic moment.
For values of the peak pressure in excess of the static collapse pressure the plate

deforms initially in one of four mechanisms depending on the parameters A = p,JPs
and a = aiR.

(1) Mechanism 3

For large values of A it is assumed that the initial mechanism of deformation consists
of a central portion of radius ro(t) moving at a velocity V(t), an outer annular portion
r 2(t) S r S R at rest, and an annular region between undergoing plastic deformation
(Fig. 4). At r = ro(t) and r = r2(t)(ro < r2 ) two plastic hinge circles exist and, for blast

FIG. 4. Mechanism 3.

pulses of the kind shown in Fig. 2, the inner radius is assumed to decrease until the
center is reached while the outer increases until the support is reached. At the radius
r = r1(t) the plastic regime B exists and the rate of the radial component of curvature
is discontinuous across this circle. The plastic regimes existing elsewhere are shown in
Fig. 4. The velocity field meeting the above description, satisfying the flow rule, boundary
conditions and the appropriate continuity and discontinuity conditions [1] is

v o S r S ro(t)

V[1-u(r-ro)lrd ro(t) S r S r1(t)
Wt =

r2 r1(t) S r S r2(t)Valn-
r

0 r2(t) S r S R

(5)

where

In (5), W is the plate deflection and the subscript t denotes partial differentiation.
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Deformation proceeds under another mechanism once one of the hinge circles reaches
its terminal position. If the outer hinge circle reaches the support first the ensuing mech­
anism, called mechanism 2a, is described by the velocity field (5) with r2 = R. If the
inner hinge circle reaches the center first the ensuing mechanism, called mechanism 2b,
is described by (5) with ro = o. The final phase of deformation occurs after both traveling
hinge circles have reached their terminal positions and the mechanism, called mechanism
1, is described by (5) with both ro = 0 and r 2 = R. This last mode is the same as that for
static collapse [6].

(2) Mechanism 2a

This mechanism given by the velocity field (5) with r2 = R is an initial mechanism
for certain ranges of ex and A. In fact, the range of ex turns out to be 0·56 ;S; ex ;S; 1. The
range of A depends on ex and is denoted by Al < A ;S; A2 the numerical values for which
are shown in Fig. 5.
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FIG. 5. Deformation mechanism diagram.
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(3) Mechanism 2b

This mechanism given by (5) with ro = 0 is likewise an initial mechanism for certain
ranges of IX and A. The range of IX is 0 < IX ~ 0·56 while the range of Adepends on IX and
is again denoted by At < A~ A2 the numerical values for which are shown in Fig. 5.

(4) Mechanism 1

This mechanism, given by (5) with ro = 0 and r2 = R, is an initial mechanism, and
hence for blast pulses the only mechanism, for all IX and for a certain range of Adepending
on IX. The range of Adenoted by 1 < A~ A1 is obtainable from Fig. 5.

The way in which A1 and A2 are found is described once the governing equations are
derived.

3. GOVERNING EQUATIONS

Independent of mechanisms the equation of motion is

N -(rM)r = I: (p-mwll)r dr (6)

where the subscripts rand t denote partial differentiation and m is the mass per unit
area of plate. Differentiating the velocity (5) provides the acceleration to be substituted
in (6) and the yield condition (Figs. 3 and 4) allows the circumferential component of
bending moment N to be eliminated. Performing the integration in (6) and using the
properties M = M o in 0 ~ r ~ ro, M(r1) = 0, M(r2) = -Mo and M r(r2) = 0 leads to the
following four equations governing mechanism 3.

V',,(e 1- e2 + "H,,(6 - 8" + 3,,2)+ 2(e 1- e2)(3 - 3" + ,,2)] - Ve'l ,,2[,,(1-,,)(4 - 3,,)

+ (e1- e2)(6 - 8" + 3,,2)] - V e~,,3(4 - 3,,) - V ,,',,2[,,(4 - 3,,) + 2(e 1- e2)(3 - 2,,)]

={[(PR2/6Mo{31X2-21X3e~1_(1-,,)3e-2~1}-1]e2~1(e1-e2+,,)2 IX < P1

[(PR2/6Mo)e-2~1,,(3-3,,+,,2)-1]e2~1(e1-e2+,,)2 P1 < IX

V'(e 1- e2 +,,) [3e2(~1-~2)- 3- 2(e1- e2)(3 - 3" + 3,,2 - ,,3)] - V e'1[3e2(~1-~2)

- 3- 2(e1- e2){3 - ,,2(1_ ,,)(3 - 2"n - 2(e1- e2)2(3 - 6" + 6,,2 - 2,,3)]

- Ve~[3e2(~1 -~2)gl - e2 -(1-"n + (e1- e2)(3 - 6" + 6,,2 - 2,,3)+ 3(1-,,)]

- V,,'[3e2(~1 -~2) - 3- 2(e 1 - e2)(3 - 3,,2 + 2,,3) - 6(e 1 - e2)2(1- ,,)2]

{

[{(PR21X2/2Mo)-1}(el-e2)-1]e2el(el-e2+,,)2 IX < P1

= [(PR21X2/4Mo){1- 2e2 + 21n ~-e-2~2/1X2} -(1 + e 1 - e2)] e2~I(el - ~2 +,,)2

(7)

(8)

(9)
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V'(~1 - ~2 + '1)[3e2(~1 -~2) - 3 + 2'1(3 - 3'1 + '1 2)] - V ~'1[3e2(~1 -~2)

- 3 - 2(~ 1 - ~2)(3 - 6'1 + 6'12- 2'1 3
) + 2'12(1- '1)(3 - 2'1)]V ~2[3e2(~1 :-~2)

x {2(~ 1 - ~2) -1 + 2'1} + 3 - 6'1 + 4'12- 2'1 3
] - V'1'[3e2(~1 -~2) - 3 - 6(~ 1 - ~2) (10)

(1- '1)2 + 2'12(3 - 2'1)] - V ~2[3e2(~1-~2)]

= [(pR20(2/2Mo)-l]e2~1(~1 - ~2 +'1? 0 < P2 < 1.

The new variables that have been introduced in the derivation of (8), (9) and (10)
are defined by

~1 = In(1/Pl)

Po = ro/R

~2 = In(I/P2)

PI = rdR

'1 = I-Po/PI

P2 = r2/R

Primes over the dependent variables V, ~1' ~2' and '1 denote differentiation with respect
to the variable " where

(11)

The equations governing mechanisms 2a, 2b and 1 are readily obtained from (7), (8),
(9) and (10) as outlined below.

(1) Mechanism 2a

The outer hinge circle is stationary at radius r = r2 = R and the properties leading
to the governing equations are M = M o in the region O:s; r :S; ro, M(r 1) = 0, and
M(R) = - Mo. Consequently, the equations are (7), (8) and (9) with ~2 = ~2 = o.

(2) Mechanism 2b

There is no inner hinge circle and the relevant properties are M(r 1) = 0, M(r2) = - M 0,

and M.(r2) = O. Thus, the governing equations are (8), (9) and (10) with '1 = 1 and '1' = O.

(3) Mechanism 1

The outer hinge circle is stationary at radius r = r2 = R and there is no inner hinge
circle, leaving the two properties M(r1) = 0 and M(R) = - M 0, so the governing equations
are (8) and (9) with ~2 = ~2 = 0, '1 = 1, and '1' = O.

Having now the equations governing motion in all four mechanisms it is possible to
find the functions Al and A2 shown in Fig. 5. It is assumed that the hinge circles and the
circle r = r1 have zero initial velocities so that ~'1 = ~2 = '1' = 0 at,' = O. Al is the upper
bound of the values of A for which mechanism 1 applies and the initial value of ~ b

designated ~\o), for each A = p"jPs or peak pressure Pm of this mechanism is obtained by
solving the following two equations which are the appropriate special cases of (8) and (9):

0( < PI

PI < 0(

(12)
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(13)

(X < Pt

{

[(pmR2(X2/2MO)et -(1 + et)]e2~1(1 + et)

V'(3e2~1-3-4et) = [(PmR2(X2/4Mo){I +21n ~_e-2~1/(X2}

-(l+ed]e2~1(1+et) Pt < (x.

By considering an increasing sequence of Xs the upper bound At is that value which
causes an inflection point in the bending moment diagram for M either at the plate
center or at the support. This means that the yield condition will be violated at these
places for values of A infinitesimally larger than At. The conditions Mrr(O,O) = 0 and
Mrr(R,O) = 0 are expressed by the equations

V' = PmR2/12Mo (14)

V'(3e2~1-1) = [(PmR2(X2/2Mo)-1]e2~1(1 +et) (15)

and when A = At either (14) or (15) is satisfied by the solutions V'(O) and e\O) of (12) and
(13). Computations show that whenever 0 ~ (X ~ 0·56, At is determined by the condition
Mrr(O,O) = 0 represented by (14), and whenever ()'56 ~ (X ~ 1, At is determined by the
condition Mrr(R,O) = 0 represented by (15). For further increases in At the former case
indicates that the initial mechanism is 2b whereas for the latter it is 2a. The two portions
of the At curve are shown in Fig. 5.

The values of A2 are found in a similar way. If the initial mechanism is 2a, the initial
values V'(O), e\°l, and ,,(0) are obtained by solving for each A(A > Ad or Pm equations (7),
(8) and (9) with the special values e't = e2 = ,,' = 0, and e2 = O. A2 is that value of A
which causes an inflection point in the bending moment diagram for M at the support.
The condition Mrr(R, 0) = 0 is expressed by the equation

V'[3e2~1-3+2,,(3-3,,+,,2)]= [(PmR2(X2/2Mo)-1]e2~1(1+et) (16)

and when A = A2' the initial values V'(O), e\O) and ,,(0) satisfy (16). If the initial mechanism
is 2b, the initial values V'(O), e\O) and e~O) are obtained by solving for each A(A > At)
or Pm equations (8), (9) and (10) with the special values e't = e2 = ,,' = 0, and" = 1.
A2 is that value of Awhich causes an inflection point in the bending moment diagram for M
at the plate center. The condition Mrr(O,O) = 0 is expressed by the equation

V' = PmR2/12Mo (17)

and when A = A2' the initial value V'(O) satisfies (17). The two portions of the A2 curve are
shown in Fig. 5.

4. SOLUTION FOR RECTANGULAR PULSE

Now follows an outline of the method of solution applicable to rectangular pulses
with pressures high enough to cause initial deformation by mechanism 3. For the other
initial mechanisms the method is similar and the details are simpler.

A solution is obtained if it is assumed that while the constant pressure is being applied
the hinge circles and the circle of radius r = r1 remain stationary. This phase of the
motion, called phase la, involves the solution of equations (7), (8), (9) and (10) with the
pressure P a constant (A > A2) and with the special values e't = e2 = ,,' = O. The solutions
are denoted by e\O), e~O), and ,,(0). V' is given explicitly by (7). Corresponding to these
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TABLE 1. INITIAL VALUES OF Po, P" AND P2

a 0-438 a 0-656

,\ Initial Initial
p~) p\OI pjO) mechanism PhD) p\O) p~l mechanism

1-05 0 0-492 1-0 I 0 0-635 1-0 I
I-I 0 0·487 1-0 I 0 0-636 1·0 I
1-2 0 0'480 1-0 I 0 0-637 1-0 I
1·5 0 0·460 1·0 I 0 0·639 1·0 1
2 0 0-438 1-0 1 0 0·643 1·0 1

2-5 0 0·423 0-987 2b 0 0·645 1-0 I
3 0 0-419 0-906 2b 0-039 0'648 1-0 2a
4 U 0-418 0-816 2b 0-143 0-649 1·0 2a
5 0 0'420 0·766 2b 0-200 0'648 1-0 2a
6 0-238 0-646 1-0 2a
7 0 0-424 0·709 2b 0-265 0-643 1-0 2a

8 0-292 0-643 0'983 3
to 0-186 0·428 0-662 3 0-337 0·646 0·947 3
15 0·239 0-431 0-619 3 0-402 0·649 0·892 3
50 0·335 0-436 0-536 3 0-523 0-654 0-784 3

100 0·366 0-437 0·507 3 0·564 0·655 0·747 3

values some initial values of the radii Po, PI' and P2 are listed in Table 1 for two values
of a. Note that as Aincreases they tend to the radius a of the loading.

Let the pulse end at time t = to, or when t' = t~, and let the velocity and deflection
of the plate center at this time be Vo and bo. Then from equation (7) alone, successive
integrations give

and

Vo = /Im

bo = /2/2mp

(18)

(19)

where / = pta is the impulse applied per unit area.
When t > to, no pressure acts on the plate and, according to (7), the velocity of the

plate center or rather the central region 0 :s;; r :s;; ro is constant during this phase of
motion, called phase lb. It is evident from (8), (9) and (10) with V' = p = 0 that (1) (2'
and '1 can no longer be treated as constants.

In equations (8), (9) and (10) set V' = 0, V = Vo and, for convenience, introduce
the nondimensional time variable t defined by

The resulting equations, in indicial notation, may be written in the form

(20)

i,j=1,2,3 (21)

in which the derivatives are with respect to t, and, for notational purposes only, ¢3 = '1.
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The chosen numerical scheme for the solution of (21) commences by solving for the
derivatives ~; (equations (21) are linear in the derivatives) to give

i = 1,2,3. (22)

From (21) the variable r can be eliminated resulting in the two equations

and (23)

The initial values determined in phase la are ~10). From its initial value an incremental
change is made in one of the variables here chosen to be ~3 so that its new value is
~~l) = ~~0)+A~3. Then, from (23), the corresponding new values of ~1 and ~2 are

~ll) = ~lO) + g(O)A~3

~~l) = ~~O) +h(O)A~ 3

where g(O) = g(~~O), ~~O), ~~O») and h(O) = h(~lO), ~~O), ~~O»). With the values ~P) the new
values g(l) and h(l) can be determined and hence ~12) can be calculated with the next
increment A~3 = ~<t)-~~l). This procedure is continued until either ~3 = '1 = 1 or
~2 = O. In the former case the deformation continues by mechanism 2b whereas in
the latter case it continues by mechanism 2a. To find the value of rl of r at the end of
phase 1b all the time increments are summed. The first of such increments is

Ar = r(l)_r(O) = (~~1)_~~0»)/~~0)

in which ~~O) = f~O) by (22).

Finally the deflection <5 1 of the plate center at the end of phase Ib is given by

<5 1 -<50 = VO(t 1-to) = [2R2(r 1 -ro}/12mMo (24)

in which <50 is determined by formula (19) and ro = 12MoIR 2p.
As mentioned above the next phase of motion, called phase lc, can take one of two

forms depending on which hinge circle reaches its terminal position first. Only the case of
the inner hinge circle of radius ro(t) reaching the center first will be described since the
other case is covered by the description of phase Ib in the problem of Ref. [4], the only
difference being in the initial values ~ 1 and '1. (In [4], ~ plays the role of ~d Numerical
calculations show that ro(t) = 0 before r2(t) = R whenever 0 ~ IX ~ 0·56. The equations
governing phase lc for deformation by mechanism 2b are (8), (9) and (10) with the special
values p = 0, rl' = 0 and '1 = 1. For brevity, the indicial notation is used to express these
equations in the form

i,j = 1,2,3. (25)

In (25), derivatives are with respect to the time variable r defined by (20) and, for nota­
tional purposes, ~3 = }' = VIVo.

The numerical procedure is the same as that in phase 1b except that increments
A~2 are used (instead of A~3) and the initial values are the final values of phase lb. The
procedure is halted at ~2 = 0 (P2 = 1) when phase lc ends. Let the central deflection
and the time at the end of phase lc be <52 and t 2 (r = r2). Then

N

r2 -rl = L Ar(n)
n= 1
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where

Also
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which, by the numerical procedure adopted above, is replaced by the summation

12R2 N
02 -01 = I: y(n)Ll,(n). (26)

12mMo n= 1

In the final phase of motion, called phase 2, deformation is by mechanism 1 with
the governing equations (8) and (9) having the special values ~2 = r/' = ~2 = P = 0, and
,., = 1. So that the analysis of this phase conforms to those of [1] and [4], the variable,
is retained and the variable' = V/V2 is introduced where V2 = V('2)' Then, the initial
and final values of , are unity and zero. Also, the governing equations become

n~l + 1)(2~1 + 1)-'~'1~1 = -(~1 + 1)2e2~1/Y2 (27)

n~l + 1)(3e2~1-3 -4~1)-'~'1(3e2~1-3 -6~1 -2~n = -(~1 + 1)3e2~1!Y2 (28)

in which differentiation is with respect to , and Y2 = V2/Vo (this is the value of y at the
end of 'phase lc). Eliminating, from (27) and (28) leads to a linear differential equation
with the solution

(29)

Motion ceases when' = 0 and this occurs when ~1 ~ 0·478 which is the solution of the
equation

(30)

Finally, let the central deflection when, = '3 (t = t3 ) be 03' Then

In Figs. 6 and 7 are shown the paths ABeD followed by the point (~h ~2'''') for values
of IX equal to 0·438 and 0·656 respectively,* both for A. = 15 which starts motion by

* These values of IX were chosen to agree with values being used in an experimental program [7].
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FIG. 6. Trajectory of (et> e2, til for IX = 0·438 and A. = 15.
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mechanism 3 (see Fig. 5 or Table' 1). In the case of the smaller value of 0( Fig. 6 shows
tl}.e trajectory starting at A and intersecting the plane 11 == 1 at B which corresponds to
the value Po = O. At this point of intersection the inner hinge circle has reached the
center and the trajectory continues along BC in the plane 11 = 1 which corresponds to
mechanism 2b. It next intersects the plane ~2 = 0 at C which corresponds to the value
P2 = O. At this point of intersection the outer hinge circle has reached the support and

o
c

1.0

0.2

0.3

~2

FIG. 7. Trajectory of (el> e2, til for IX = 0·656 and A. = 15.
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FIG. 8. Trajectory of (Po, Ph P2) for IX = 0·438 and A. = 15.

the trajectory continues along CD, the line of intersection of the planes ~z = 0 and
11 = 1, corresponding to motion by mechanism 1. Figure 7 for IX = ().656 can be inter~

preted in a similar manner. Figures 8 and 9 show the trajectories ABCD in Po, Pi> pz
space.

Figures 10 and 11 show the variation of Po, PI' and Pz with T in all phases for values
of IX equal to 0·438 and 0·656 respectively, both for A. = 15. In each case the starting

1.0

,,/
"",,/

"/
"""

FIG. 9. Trajectory of (Po, Ph P2) for IX = 0·656 and A. = 15.
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FIG. 10. Variation of Po. Ph and P2 with t for CI = 0·438 and 1 = 15.

values of Pl are close to the loading radius IX with Po and PI almost equally spaced on
either side (see Table 1). The three radii are constant during phase 1a. The magnitudes
of the average velocities of Po and pz in phase 1b are comparable. During phase 1b and,
in Fig. 11, during phase 1c the values of Po are almost constant. During phase 2, Po is
almost constant in Fig. 11 for IX = 0·656 unlike that in Fig. 10 but like that in Fig. 12

1.00.8 0.90.30.2OJ 0.4 0.5 0.6

r'12M. t /mR2v.

FIG. 11. Variation of Po, PI> and P2 With t for CI = 0'656 and 1 = 15.
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Fro. 12 Variation of Po, Ph and pz with T for ct = I and A= 15-7.
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which has been included to allow a comparison with the case IX = 1 (A. = 15·7). The final
value of" i.e. '3' increases with IX which is to be expected because the work input increases
with IX.

5. RESULTS AND CONCLUSIONS

For three values of IX Fig. 13 shows the relationship among the final central deflection
fJ, the impulse per unit area I, and the pressure Pm in the nondimensional form of A. versus
mMofJ/1 2R 2 = v. The curve for IX = 1·0 was obtained from the results in [4]. The three
curves are alike. They start from the value A. = 1 where fJ = 0 and without curvature
change tend monotonically toward vertical asymptotes. The location of these asymptotes
have not been found for IX = 0·438 and IX = 0·656 but would be determined by con­
sidering the case of an ideal impulse (A. = OC!). However, judging by the case IX = 1·0
for which the asymptote is known, the value of v when A. = 100 is sufficiently close.
These values are 0·0212 and Q.0456 for IX equal to 0·438 and 0·656 respectively. Figure 14
is another way of representing the same information and is essentially a pressure­
impulse diagram.

16r-------.Tr""-r----,._-------r-------r--------,

14

12

10

6

4

2

oo=-----~=-------_:_l::__-------L-----...L--------.J
1.0 2.0 3.0 4.0 5.0

IRI( 12mMo8)1/2= 1/0211I1/2

FIG. 14. Pressure-impulse diagram.

Figure 15 is a nondimensional plot relating the pressure to the loaded area considering
as a parameter, v, which is proportional to the ratio lJ/1 2

• By treating both impulse and
permanent central deflection as fixed quantities the curves show how the pressure must
be increased as the loaded area decreases in order to maintain lJ.
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From Figs. 13, 14 and 15 the following conclusions can be drawn:

(1) For a given impulse, the central deflection fJ increases monotonically with the
pressure Pm becoming a maximum when the pressure is infinite, that is, when the given
impulse is applied as an ideal impulse.

(2) Again for a given impulse, consideration of how fJ increases with ;. in Fig. 13
reveals that for ~ > 0·438 the central deflections are greater than 85 per cent of that
due'to an ideal impulse for pressures about seven times the corresponding static collapse
pressure, that is, whenever ;. > 7. Below this value of A. the decrease of A. with fJ is quite
pronounced.

(3) For a given central deflection fJ, Fig. 14 shows that for A. > 7 (ex > 0·438) the
increase in impulse, over the ideal impulse, necessary to maintain the given deflection
is less than 7 per cent. A large increase in impulse is required to maintain fJ and ;. decreases
further, especially in the range 1 < A. < 3.

(4) For a given permanent central deflection fJ and a given impulse I Fig. 15 shows
that the pressure required to maintain fJ increases rapidly as the loaded area decreases,
especially for ex < ()'6 (for the values of v shown).
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FIG. 15. Variation of pressure with loaded area.
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Resume-Etude theorique sur les plaques circulaires bridees en plastique rigide, soumises a une charge par
souffle uniformement distribuee sur la surface centrale circulaire. La dependance de la flexion centrale per­
manente sur la pression, I'impulsion et la surface chargee est obtenue au moment oil \'impulsion du souffle
est consideree comme impulsion rectangulaire.

Zuammeaf......-Eine theoretische Untersuchung von eingespannten kreisformigen starr-plastischen Platten
wurde ausgeflihrt, die einer gleichmissig verteilten Druckbelastung tiber einer zentralen kreisffirmigen Fillche
unterworfen sind. Die Abhllngigkeit der anhaltenden zentralen Abweichung bei Druck, Impuls und belasteter
Flllche wird erhalten wenn der Belastungsimpuls a1s ein rechtwinkliger Impuls angenommen wird.

AficTpaKT-npOH3Be,lleHO TeopeTH'IecKoe H3Y'leHHe 3alICHMHhlX Kpyr1ILlX IlJIaCTHH H3 lKecTKo­
nnaCTHrHOrO MaTepHana, nO,llBeprHYThIX B3PblBHOA HarpY3KH 0,llHoo6pa3Ho' pacnpe,llenCHHoA no
ueHTpanbHoA KpyrnoA 06nacTH. 3aBHCHMOCTL nOCTOllHHoro ueHTp3nbHOrO nporH6a OT ,llaaneHHlI,
HMOym.ca H 06naCTH 38rpY3KH nony'laeTcll TOr,lla, KOr,lla HMoynLC B3PblBa B311T, KaK opllMoyrOnLHltlit

HMnYbnC.


